Estimating tails of independently stopped random walks using concave approximations of hazard functions

نویسندگان

چکیده

Abstract This paper considers logarithmic asymptotics of tails randomly stopped sums. The stopping is assumed to be independent the underlying random walk. First, finiteness ordinary moments revisited. Then study expanded more general asymptotic analysis. Results are applicable a large class heavy-tailed variables. main result enables one identify if behaviour sum dominated by its increments or variable. As consequence, new sufficient conditions for moment determinacy compounded sums obtained.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

hazard evaluation of gas condensate stabilization and dehydration unit of parsian gas refinery using hazop procedures

شناسایی مخاطرات در واحد 400 پالایشگاه گاز پارسیان. در این پروزه با بکارگیری از تکنیک hazop به شناسا یی مخاطرات ، انحرافات ممکن و در صورت لزوم ارایه راهکارهای مناسب جهت افزایش ایمنی فرا یند پرداخته میگردد. شرایط عملیاتی مخاطره آمیز نظیر فشار و دمای بالا و وجود ترکیبات مختلف سمی و قابل انفجار در واحدهای پالایش گاز، ضرورت توجه به موارد ایمنی در این چنین واحدهایی را مشخص می سازد. مطالعه hazop یک ر...

Tails of Stopped Random Products: the Factoid and Some Relatives

The upper tail behaviour is explored for a stopped random product ∏N j=1 Xj , where the factors are positive and independent and identically distributed, and N is the first time one of the factors occupies a subset of the positive reals. This structure is motivated by a heavy-tailed analogue of the factorial n!, called the factoid of n. Properties of the factoid suggested by computer exploratio...

متن کامل

Ordered random walks with heavy tails ∗

This paper continues our previous work [4] where we have constructed a k-dimensional random walk conditioned to stay in the Weyl chamber of type A. The construction was done under the assumption that the original random walk has k− 1 moments. In this note we continue the study of killed random walks in the Weyl chamber, and assume that the tail of increments is regularly varying of index α < k−...

متن کامل

The Sugeno fuzzy integral of concave functions

The fuzzy integrals are a kind of fuzzy measures acting on fuzzy sets. They can be viewed as an average membershipvalue of fuzzy sets. The value of the fuzzy integral in a decision making environment where uncertainty is presenthas been well established. Most of the integral inequalities studied in the fuzzy integration context normally considerconditions such as monotonicity or comonotonicity....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Applied Probability

سال: 2021

ISSN: ['1475-6072', '0021-9002']

DOI: https://doi.org/10.1017/jpr.2021.9